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Abstract 

The dynamics of nuclear coalescence or reseparation. W. J. Swiatecki 

(Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA). 

A qualitative theory of the macroscopic dynamics of nucleus~nucleus 

collisions is presented. Attention is focused on three degrees of 

freedom: asymmetry, fragment separation, and neck size. The physical 

ingredients are a macroscopic (liquid~drop) potential energy [1], a 

macroscopic dissipation (in the form of the Wall- and Wall-plus-Window 

formulae [2,3]) and a simplified treatment of the inertial force. These 

ingredients are distilled into algebraic equations of motion that can 

often be solved in closed form. The applications include the calcula­

tion of the normal modes of motion around the saddle-point shapes, 

and the division of nuclear reactions into: a) dinucleus (deep-inelastic) 

reactions, b) mononucleus or composite nucleus (quasi-fission) reactions, 

and c) compound-nucleus reactions. Static and dynamic scaling rules 

are deduced for comparing different dinuclear reactions in a systematic 

way. Estimates are given for the critical curve in the space of target 

and projectile mass above which deep-inelastic reactions ought to make 

their appearance. The extra push over the interaction barrier needed 

to make two nuclei form a composite nucleus or else to fuse into a 

compound nucleus is also estimated. 

I. Introduction 

I would like to present a qualitative macroscopic study of what happens 

when two idealized nuclei touch~ the neck between them grows, the mass 



asymmetry begins to change and, eventually, either a compound nucleus 

is formed or the system reseparates. The stress will be on the greatest 

possible simplicity: I will focus on what I believe are a few of the 

essential physical ingredients of the process and I will then codify 

them into algebraic equations whose exploitation involves - in the main -

only elementary functions and the solution of quadratic or, at most, 

cubic equations. 

2. The dynamical ingredients 

A dynamical theory often involves three types of forces: conservative, 

dissipative, and inertial. In this study, I will focus on the 

macroscopic aspects of the problem and will consequently use a macro­

scopic Potential Energy [1], and a macroscopic One-Body Dissipation 

Function [2,3]. As regards the inertial terms, I will make the 

following approximation: for necked-in shapes, when the communication 

between the two pieces is impeded by a relatively thin neck (the 

"dinuclear regime 11
), I will use the inertia appropriate to two non­

communicating pieces (e.g., just a reduced mass for the relative motion 

of the mass centers). For shapes without a pronounced neck (the "mono­

nuclear regime"), I will disregard the inertial forces entirely, for 

there is reason to believe that, in this regime, they are usually small 

compared to one~body dissipative forces. So this is the physics that 

will go into my machinery: 

1. Macroscopic potential energy, 

2. Macroscopic dissipation function, 

3. Dinuclear inertia in the dinuclear regime and zero in 

the mononuclear regime. 



I will make a schematic division between the mononuclear regime 

and the dinuclear regime at the point where the window through which 

the two pieces communicate is half open. The precise meaning of this 

will become clear after I have described the shape parametrization 

that I will use. 

3. Shape parametrization 

In striving for an algebraic theory of a complex process, the choice 

of appropriate and elegant degrees of freedom is half the battle. 

Figure 1 shows the best I could do to date: two spheres with radii 

R
1 

,R
2 

and center separation r, connected by a portion of a cone with 

semiopening angle 8. There are three degrees of freedom (the absolute 

minimum required to describe the type of processes we are after). 

They are 

Rl ~ R2 
L Asymmetry variable f:.. 

Rl + R2 
(1) 

2. Distance variable p 
Rl + R2 

(2) 

3. Window-opening variable a = ( ~inS y (3) s1.n8 
max 

Here sin8 , equal to (R1 -R2 )/r, refers to a fully open window, so max 

that a, which ranges from 0 to 1, is a measure of the degree of 

communication between the two pieces, I shall take a=~ to be the 

boundary between the dinuclear and mononuclear regimes. 



4. The configuration space 

The variable ~ ranges from -1 to +1~ a ranges from 0 to 1, and p from 

0 to 00 , so the configuration space is a semi-infinite box, shown in 

perspective in Fig. 2 and in plan and side view in Fig. 3. The box 

is bounded by the horizontal planes a = 0, 1, by the vertical planes 

~ = -1,+1 (only the positive half of the box is shown in Fig. 2), and 

by a curved surface on the left, corresponding to the minimum window 

that has to be there when the two spheres intersect. (The volume is 

always considered renormalized, so there is no implied density doubling 

anywhere.) The configuration box is a little like a semi-infinite 

aircraft carrier steaming to the left. The shapes corresponding to 

various parts of the box are indicated by descriptive labels. The 

single sphere is anywhere along and to the left of the diagonal lines 

p = ±~ on the overhanging part of the flight deck, where the larger 

of the two spheres has swallowed up entirely the smaller one. 

Proceeding along the deck to the right results in more and more 

elongated conical frustums, capped with spheres. The shapes are 

reflection symmetric along the ship's midplane. As one descends toward 

the waterline, the shapes become necked-in. Separating spheres are at 

the waterline to the right. The aircraft carrier's curved stem corre­

sponds to intersecting spheres. 

This then is the layout of the configuration box that will act as 

the stage for the various dynamical trajectories corresponding to 

two nuclei coming together, interacting, and either ending as a single 

sphere on the left or reseparating as two pieces on the right. 



5, The potential energy 

The macroscopic potential energy is the usual sum of surface and 

Coulomb energies. I have found a simple and useful parametrization 

of the potential~energy surface by starting with an expansion to third 

order in the neck size, written in terms of a set of special 11 elegant 

variables" v and 0. These variables are defined in terms of a and p 

by 

\) - ..;r; (range 0 to 1) , (4) 

2 1 
(J 

p - . 
- ·~~~ 

1- LJ. 2 
(range -1 to oo). (5) 

For a small neck, V reduces to the neck radius in units of twice the 

\) + 
neck radius 

(6) 
2R 

Similarly, a tends to the tip separation of the spheres in units of 2R: 

(J + 
tip separation 

(7) 
2R 

As the configuration tends to a sphere (i.e., p + ±LJ.), a tends to -1. 

In terms of these variables, the potential energy, taken with 

respect to the energy of tangent spheres and written in units of the 

-2 
quantity 8nR y, may be approximated by the following cubic: 

n 
PE-

-2 
8nR y 

2 3 = va - v + v - xa 

Here X is an "effective fissility parameter" given by 

(8) 



X 

2 2 Z
1
Z

2
e /(R1 +R2 ) 

(9) 
41TyR 

where Z
1
e,Z 2 e are the electric charges on the two pieces andy is the 

surface~energy coefficient. This "effective fissility parameter" X 

is analogous to the usual fissility parameter and is a measure, for 

dinuclear systems, of the importance of the repulsive electric force 

Z
1
Z

2
e 2 /(R1+R

2
)
2 compared to the attractive nuclear surface-tension or 

"proximity11 force 4TrRy. For a system with a given mass number, the 

dependence of X on asymmetry is readily verified to be 

X 

where 

D 

X 
0 

(1- D) 2 

1+ 3D 
(10) 

(11) 

(12) 

and Ze,R refer to the charge and radius of the combined system. The 

fissility parameter X is identical, apart from a factor, with the usual 
0 

fissility parameter x defined by 3Z
2
e

2
/401TyR3

• 

6. Conditional and unconditional saddle points 

The configurations where the potential energy n is stationary with 

respect to all small variations of ~. p, a are true (unconditional) 

saddles, of which the symmetric Bohr-Wheeler and asymmetric Businaro-

Gallone saddles are the most important. 



Configurations where n is stationary with respect to p,a when the 

asymmetry ~ is frozen are also important in the dinuclear regime where 

the asymmetry degree of freedom is inhibited to a greater or lesser 

extent. These are "conditional" saddles, the equilibrium being 

conditional on the inhibition of the asymmetry. 
~ 

For the location v, a 

of a conditional saddle one finds, by differentiation of Eq. (8), 

X (13) 

(14) 

The saddle-point energy follows as 

(15) 

One recognizes here a useful static scaling rule of our model: 

11The dimensionless conditional saddle-point properties (such as 

the relative degree of window opening and the energy deviation from 

~2 

tangent spheres expressed in unts of 8'ITR y) are functions of the 

effective fissility parameter X alone, and independent of asymmetry." 

For symmetric systems, the conditional saddles become the uncondi~ 

tional Bohr~Wheeler saddles, since the frozen-asymmetry condition is 

then redundant. 

Because our energy expression for n is relatively simple, the 

properties of all the saddle points, including the Businaro-Gallone 

asymmetric shapes, can be written down in closed form. For example, 

the fission~barrier energy (the energy of the Bohr-Wheeler saddles), 

in units of the surface energy of the spherical shape, follmvs as 



~ 

where 

PE~ PE 
sphere 2. = = a- bX ~eX 
2. 0 0 

41TR Y 

a 21/3 - 1 0. 259921 

b 12 11 21/3 0.258134 

c = 

5 

-5/3 
2 

10 

0.314980 

+cX 3 
(16) 

0 

Equation (16) is compared with an accurate computer calculation [1] in 

Fig. 4, In the present approximation, the Bohr-Wheeler family of symmetric 

saddle~point shapes starts as tangent spheres at X = 0, elongates until 
0 

X
0 

= 1/3, then contracts to become, at X
0 

= 2/3, a pair of tangent spheres 

connected by a neck that is four~ninths open, and finally becomes a 

single sphere at X
0 

= 1. The degree of opening of the neck (window) is 

?:2 when X = 1/VZ ~ 0. 7, All this is roughly in agreement with exact 
0 

calculations, especially if the fissility parameter X is taken to be 
0 

defined not in terms of fundamental constants through Eq. (11), but as 

the "relative fissility," i.e., the value of the charge on the system 

divided by that critical value which makes the Bohr-Wheeler saddle-point 

(in the model in question) coincide with the sphere (and causes the 

fission barrier to vanish or nearly vanish). We may then make the 

following identifications: 

X +4 X 
0 

3 
2. 2. 

Z e 

401TyR3 

2/ 2 3Z 1 Z2 e (R
1 

+R
2

) 

lOTiyR 

(1- D) 2 
X 

1+ 3D 

(17) 

(18) 
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These equations differ by a factor 6/5 from Eqs. (9) and (ll). The 

above implicit definition of X and the identication of X with x 
0 0 

underlies the plot in Fig. 4. Figure 4 also shows the asymmetric 

Businaro~Gallone saddles peeling off at the point (X
0

)BG' given by 

(60 0 + 1 -1 3587 ) cos - cos 
3 652 v' 163 

0.378174 (19) 

to be compared with the correct value xBG = 0.396 . The energy of the 

Businaro-Gallone shapes is also compared with the results of computer 

calculations in Fig. 4. 

All in all it would seem that the energy expression for n, Eq. (8), 

inspired by a third-order expansion in the neck size, when expressed 

in terms of the "elegant variables" V, a, continues to provide a rough 

parameterization of the potential~energy surface all the way up to 

the spherical shape. 

7. The dissipation function 

This is a crucial physical ingredient in our study and it governs the 

overall character of the dynamics. I started from the Wall Formula 

for the rate of energy dissipation Q in the mononuclear regime and the 

Wall-and-Window formula in the dinuclear regime. The Wall formula 

reads as follows [2]: 

. 
Q ~f . 2 pv (n- D) do . (20) 

The \vall-and-Window formula is given by [3]: 



Q 

fragment 1 fragment 2 (21) 

Here p is the nuclear mass density, :0: is the mean nucleonic speed, 

n is the normal velocity of a surface element da, ~a is the area of 

the window, and u , u are the tangential and radial components of the 
t r 

relative motion of the two pieces, The quantity D (not to be confused 

with ~2 in Eq, (10)) is a "normal drift velocity component 11 of the 

particles about to strike a surface element, It ensures the conservation 

of linear (and angular) momentum, (Without D, a uniformly translating 

nucleus would be losing energy,) Under a certain assumption, discussed 

in [2], D becomes a known function of the configuration and its state 

of motion, so that the integrals in Eqs, (20) and (21) can be evaluated, 

As in the case of the potential energy, I used expansions of Eqs, 

(20,21) to cubic order in the neck size, expressed them in terms of 

the elegant variables V, a, and used the resulting equations for all 

neck sizes, For small necks, the resulting formulae may thus be 

expected to be semi-quantitative (within the other idealizations of 

the theory), but for large necks they are only qualitative. 

8. The kinetic energy 

For head-on collisions, I took the kinetic energy as 

KE 

for 
a < ~ ) 

a>~ 

(22) 

for 



HereM is the reduced mass of the separated fragments. r 

I shall comment on possible extensions to noncentral collisions later. 

9. Equations of motion 

In the dinuclear regime, the resulting equations of motion for v,cr 

end up looking like this: 

0 (23) 

dv 2v - 3v2 
- cr 

dT v(cr+v 2
) 

(24) 

where 

T "" tu 
(25) 

tu = natural time unit = 
--2 

pvR 
y (26) 

and 

jJ dimensionless reduced mass 

Mr 
- 2 -!; 

2'IT(pv) R /y 
(27) 

numbers of the separated fragments and A is their sum.) 

The structure of the equations of motion leads to the following 

dynamical scaling rule: "For two dinuclear systems with the same values 

of the dimensionless reduced mass jJ and of the effective fissility X, 

the dynamical evolutions resulting from head-on collisions should be 

similar, provided lengths are measured in units of (twice) the reduced 



In practice, it will turn out that the dependence of dynamical 

calculations on V is relatively slight for many systems of interest, 

so that the time evolutions of dinuclear systems should, in fact, be 

approximately similar provided only the effective fissilities X are 

the same. 

In the mononuclear regime, the equations of motion are somewhat 

more complicated. The natural unit of length is then R and a natural 

unit of time is 

t 
0 

~ 2 
pvR 

4y (28) 

The single dimensionless parameter in the equations is the relative 

fissility X , since inertia is neglected. 
0 

Let us now look at some results. 

10. Normal modes 

The equations of motion are sufficiently simple so that approximate 

solutions in closed form may be found in several cases of interest. 

In particular, the normal modes of motion near the saddle points can be 

analyzed and explicit formulae for the characteristic times can be 

written down. 

In the mononuclear regime there are three fully overdamped normal 

modes near the Bohr-Wheeler saddle. One is an exponentially growing 

fission mode with characteristic e-folding growth time Tf; the second 

is an exponentially decaying "transverse" mode with characteristic 

time Tt; and the third is the asymmetric mode with characteristic 

time T6 . In the dinuclear regime there are two modes: an exponentially 



growing fission mode, as before, and an oscillating transverse mode 

with a characteristic timeT (i.e., with a period 2TIT ) and a osc osc 

characteristic damping time Tt. 

The three characteristic times Tf, Tt, T", or T T T are 
u f. osc. t 

shown as functions of X in Fig. 5. The scale on the left is in units 
0 

of 10~22 sec. On the right is a scale in MeV for the quantities h/T. 

Note the following qualitative features: The characteristic 

time for the fission mode changes by more than an order of magnitude 

~zz -21 
from values -10 sec for light nuclei to a few times 10 sec for 

heavy nuclei. The asymmetry mode has a similarly sluggish time scale 

for heavy nuclei. For lighter nuclei, the (stable) asymmetry mode is 

inhibited by the neck constriction and, moreover, its restoring force 

tends to zero at the Businaro-Gallone point (X
0

)BG' Its characteristic 

decay time tends, therefore, to oo as X0 tends to -0.4. All this 

suggests that the characteristic time for the asymmetry mode (when 

X > 0.4) may always remain fairly long (e.g., in excess of about 
0 

-22 
one or a few times 10 sec). 

The characteristic time of the overdamped transverse mode is much 

shorter than that of the fission mode for heavy nuclei. For lighter 

nuclei, the transverse mode has a damped oscillatory character which, 

for very light systems, should, in fact, have only moderate or even 

small damping. The transverse mode in those cases consists of a stable 

to and fro oscillation of the two pieces, with an associated swelling 

and contraction of the neck, which might also be described as a giant 

quadrupole resonance of the saddle shape, or as a quasimolecular mode. 

The energy of this resonance for light nuclei might be several MeV or 

even in excess of 10 MeV for the lightest systems (see Fig, 5). 
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11. Dinucleus (deep-inelastic), mononucleus (quasifission) 

and capture (compound-nucleus) reactions 

Figure 6 shows three dynamical trajectories for a collision between two 

mass-104 nuclei at three energies: 0, 3.6 and 10 MeV above the 

interaction barrier. The total system has A~ 208 and Z ~ 82, which 

corresponds to a fissility X ""0. 7. [In all the examples I will show, 
0 

the total system is chosen to be on the valley of beta-stability, 

with N-Z = 0. 4A/ (A+ 200)]. The reaction is symmetric, so everything 

happens in the midplane of the configuration box, at !J, = 0. Figure 6 

shows some of the equipotential lines which delineate the saddle point 

2 whose energy is 0.033 in units of the surface energy 4TIR y. This 

corresponds to a fission barrier of some 19 MeV. The approach of the 

two nuclei corresponds to a trajectory along the p-axis, moving from 

right to left. At the point p = 1, 0, the two spheres touch, and the 

first curve shows the subsequent dynamical evolution in the case where 

there is zero energy in excess of the barrier. 

The dots on the trajectory mark equal intervals of time correspond-

- 2 ing to 1/10 of the natural time unit pvR /4y. In the present case 

-22 -2 2 
this unit is 12 x 10 sec, so the time between dots is 1, 2 x 10 sec, 

Note the very rapid initial growth of the neck, the leveling out, 

and the subsequent approximately linear decrease in the neck area (the 

variable a is proportional to the area). This means that the neck 

radius, proportional to ~a , snaps with a vertical tangent, The whole 

-22 
reaction lasts about 16 x 10 sec from contact to snapping, and it 

takes place entirely outside the saddle point. Even so, some energy 

has been dissipated during the neck growth and collapse, and the two 



fragments would have less energy at infinity than that corresponding 

to the interaction barrier, which is what they started with. 

The second trajectory in Fig. 6, with 3.6 MeV above the barrier 

at injection, also fails to be captured inside the saddle, although it 

hovers just outside it for a somewhat longer time. The third trajectory, 

with 10 MeV, gets captured easily, enters the mononuclear regime, and 

then creeps toward the spherical shape. 

We thus see two distinct classes of reactions or trajectories: 

trapping and nontrapping ones, leading to a compound nucleus and a 

dinucleus respectively. The latter process would probably be recognized 

as a deep~inelastic reaction. In addition, there would, of course, 

be elastic reactions that never established proper nuclear contact, 

and quasielastic reactions, which the present model is too crude to 

bring out as a separate type. 

The above situation changes drastically if one goes to lighter 

(symmetric) systems with lower values of the fissility X (see Fig. 7 
0 

for an example of a system with X = 0.4). The saddle point for a 
0 

light system hasp> 1, Le., the saddle shape is more elongated than 

tangent spheres. Hence, after contact and neck growth, the system 

finds itself comfortably inside the saddle and heads without hesitation 

toward the spherical compound nucleus. There will still be elastic 

and quasielastic reactions, but the deep inelastic reactions will have 

disappeared(in head~on collisions). 

The opposite happens if one goes to heavier systems, with higher 

values of X 
0

• Figure 8 shows a case with X
0 

= 1, corresponding to a 

super~ heavy system with A""" 320, Z >'1:; 120. In trying to make such a super-
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heavy nucleus by colliding two equal pieces with A1 = A2 = 160, 

zl = z2 = 60, one is faced with a potential-energy landscape that 

slopes monotonically away from the spherical configuration on the 

left. The trajectory shown corresponds to starting with zero kinetic 

energy at the barrier and, clearly, one never even gets close to the 

spherical configuration (where a compound-nucleus pocket might exist 

because of shell effects). 

In the present model, the critical fissility X above which, for 
c 

the first time, a compound nucleus refuses to form automatically 

(and deep-inelastic reactions would be expected to make their appearance 

in head-on collisions), turns out to be about 0.57. Recall that the 

saddle is more or less as compact as the tangent configuration at 

X = 2/3 ~ 0.67. The difference between 0.67 and 0.57 is a reflection 
0 

of the fact that during neck growth the fragments begin to separate 

and, consequently, in order to achieve capture, the contact configura-

tion must be somewhat more compact than the saddle, 

somewhat less than 2/3. 

X must be 
0 

Two things can be done if one has a system with X >X and one 
0 c 

nevertheless wants a compound nucleus. The first is to increase the 

bombarding energy, as already illustrated in Fig. 6. This works if 

X is not too much above X , The other possibility is to go to an 
0 c 

asymmetric target-projectile combination. A dramatic illustration 

of this is provided by Fig. 9. Here we have the same super-heavy system 

(with X
0 

= 1, A~ 320) as before, but the asymmetry is very large, with 

A 1 ~296, Z 1 ~lll, and A2 ~24, Z 2 ~9. (This corresponds to /:,=0.4.) 

The effective fissility is now only X= 0.4768. This means that in 
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the dinuclear regime, the system behaves like a much lighter and less 

fissile nucleus. The equipotential lines in Fig. 9, displayed for a 

section at /:;;=0.4, show the location of the conditional saddle point, 

which is now less compact than the tangent configuration (contrast this 

with the true saddle, all the way to the left). As a result, the 

trajectory starting with zero kinetic energy at the top of the barrier 

has now no difficulty in being captured and proceeds toward the left. 

After it has entered the mononuclear regime, the asymmetry gets 

unfrozen and begins to increase somewhat, as shown in the upper part 

of Fig. 9. This makes little difference and the spherical configuration 

is attained without difficulty in about one time unit. 

If, with X fixed at 1, the asymmetry is made less extreme, the 
0 

automatic capture eventually comes to an end. It turns out that this 

coincides with the point when capture inside the conditional saddle 

fails to take place, for X less than about 0. 57. The asymmetry /:;, 

of that point is given by solving 0. 57 ~ (1- D)
2

/ (1 +3D), which leads 

to L~0.346 and A
1 
~287, Z1 ~108 and A2 ~33, Z 2 ~12 (see Fig. 10). 

By carrying out a variety of such trajectory calculations for 

systems with different fissilities and asymmetries, one learns an 

interesting fact: the condition for automatic capture inside the 

conditional saddle is, to a fair approximation, simply that the 

effective fissility X should be less than Xc, with Xc estimated as 

roughly 0.57. (This is in accordance with our approximate dynamic 

scaling rule resulting from neglecting the relatively slight dependence 

on )l). Moreover, this scaling rule also suggests that when X is some-

what above Xc the extra push, or extra velocity above the barrier needed 



for capture inside the conditional saddle, should be a function of 

X- X only and, in fact, should have the following appearance: 
c 

( do) = -a (X- Xc) + higher powers of (X- Xc) 
dT crit 

(29) 

Figure 11 illustrates the usefulness of this equation: the dots 

represent the results of a number of calculations of the critical 

injection velocity for a variety of systems with different fissilities 

X
0 

and different asymmetries. A straight line, with a~ 5, X ~ 0.57, 
c 

represents the results fairly well when X is close to X • (The scatter c 

of the points reflects the slight dependence on ]1.) When the dimension-

less variables o, T and the effective fissility X (or xeff) are written 

out in terms of the charge and mass numbers of the nuclei in question, 

the innocent looking Eq. (29) is equivalent to the following nontrivial 

statement: nThe square root of the extra energy over the barrier 

needed to ensure capture inside the conditional saddle, when multiplied 

b-." the weird combination A112A-l/6A-l/6 (A113 + A1/ 3 )-l should be 
J 1 2 1 2 ' 

approximately linear when plotted against the weird combination 

Z Z A-1/3 A-1/3 (Al/3 + A
2
1/3) -1," 

1 w2 1 2 1 

In other words, 

where vJe have introduced the definition 

(30) 

(31) 



and c1 ,c2 are essentially constants given by 

4V2 (3)113 
e

2 

--- - --
45 TI he 

(32) 

1 
, if a~ 5 is taken as suggested 

by the present schematic calculations and 

3 
X 

c 

~ 26-27, if 0.57 is taken as the 

estimate for X 
c 

(33) 

The functional form of Eq. (30) follows on dimensional grounds 

from the structure of the equations of motion; the actual values of 

the slope cl and intercept clc2 carry quantitative information on the 

magnitude of the dissipation in the dinuclear regime and could eventually 

provide a test of the window formula. 

Figure 12 shows loci of equal values of the effective fissility 

X in a plot of the asymmetry /::, against the fissility X . For X ::; 0. 57, 
0 

automatic capture into a compound nucleus takes place. For X?: 0.57, 

an extra push, described by Eq. (29) or (30), is required for capture 

inside the conditional saddle. (The conditional saddle moves into the 

mononuclear regime at X"" 1/VZ, and Eq. (29) becomes a lower limit only.) 

Figure 13 is a translation of Fig. 12 from the space of fissility and 

asymmetry to the essentially equivalent space of A1 and A2 • The contour 

lines indicate the extra push in MeV needed to make a pair of nuclei 

with mass numbers A1 ,A2 fuse beyond the conditional saddle. 



Note the critical zero~push contour, below which automatic capture 

into a compound nucleus takes place. With a mass~40 projectile, there 

should be no serious problem in making a compound nucleus in a head-on 

collision wtth any target tn the Periodic Table, except possibly the 

heaviest. With equal-mass reactions, increasing difficulties would be 

expected with projectiles heavier than about Kr. 

Beyond the 15-20 MeV contour, the condittonal saddle enters 

the mononuclear regime. Now when a trajectory enters this 

regime, the asynunetry gets unfrozen and a qualitatively new type of 

reaction may take place, as illustrated by Fig. 14, Here again we have 

X "'' 1 and the asymmetry is 0, 3, so automatic capture: does not take place 
0 

(first trajectory). But with a push of 5 MeV, capture inside the 

conditional saddle takes place and one might have thought that a 

compound nucleus would result, But look what happens: after beginning 

to head for home, the trajectory enters the mononuclear regime, and 

the asymmetry begins to decrease. This results in an increasing 

Coulomb repulsion (z1z2 increases), and the trajectory turns around 

and heads out again, But because such a reversal has to wait for a 

change in asymmetry, which is a relatively slow process, the time for 

reseparation is about 3 times longer than in the case of the first 

-"2 2 
trajectory (about 50 x 10 sec in absolute value) , So even after 

capture inside the conditional saddle, there was no capture inside the 

true saddle and no compound~,nucleus formation. By ramming with a 

higher energy (third trajectory, 45 MeV) a compound nucleus can be 

formed, but there will be a range of energies where capture inside the 

conditional but not inside the true saddle takes place. Such reactions 
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could be called mononucleus reactions. An example of an even longer-

lived mononucle:us reaction is shown in Fig. 15. Here X
0 

= 0. 9, /::, = 0, 2, 

and the injection takes place with 67 MeV above the barrier, which 

easily ensures capture inside the conditional saddle. At first the 

trajectory heads for home, but after entrance into the mononuclear 

regime, it is a competition between the growing compactness of the 

configuration and the increasing z1z2 repulsion. The latter wins, but 

the total time for the reaction is now more than 8 units (more than 

-22 ) 120 x 10 sec , By that time the asymmetry has drifted practically 

to zero and the reseparation is into two almost equal pieces. It would 

probably be very difficult to distinguish such a reaction from the 

fission of the compound nucleus and "quasifission" might be an appropriate 

term in this case. 

Figure 16 provides another example of dinucleus (deep-inelastic), 

mon.onucleus (quasifission) and compound-nucleus reactions. In addition 

it shows a critical trajectory, with an injection energy close to 16.4 

MeV, TNhich would end up at rest at the saddle point, in a state of 

unc; table equilibrium. 

The above studies suggest the usefulness of distinguishing between 

regions of configuration space: 

1. Compound-nucleus region. The region of the potential energy 

hollow around the ground state, bounded by the hypersurface in configu-

ration space on which the potential energy is equal to the energy of 

the fission barrier. 

2. Composite-nucleus or mononucleus region. The region outside 

the compound nucleus region but inside the region where there is a 

serious neck constriction (e.g., inside a somewhat fuzzy hypersurface 



where the window is about half-open.) 

3. pinu~ region. The region where there is a serious neck 

constriction (e.g., where the window is less than about half open), 

but inside the scission hypersurface (this could be defined as the 

hypersurface where the half-density contour is about to become 

separated into two, or more, closed surfaces), 

4. ~he ~ep~r~~~d region. The region outside the scission hyper­

surface. 

In many cases one will probably find a fair correspondence between 

these four regions and the four types of reactions designated as 

1. Compound 

2. Quasi-fission 

3. Deep-inelastic 

4. Quasi-elastic and elastic. 

One should remember, however, that only if a system is sufficiently 

heavy can one expect to see deep-inelastic reactions, and that only 

if the asymmetry is large enough can one expect the emergence of 

quasifission reactions as a somewhat distinct category from deep­

inelastic reactions. This is because for symmetric systems there is 

only one saddle to overcome - the unconditional one --- and trajectories 

that are not captured inside it will show a gradual shading of deep­

inelastic into quasifission reactions. On the other hand, for 

sufficiently asymmetric systems, where the conditional saddle is 

in the dinuclear regime, one may expect a rough distinction between 

quasifission and deep-inelastic reactions related to the division of 

the trajectories into those that were or were not captured inside the 

conditional saddle. 



12, Noncentral collisions 

If only a small amount of angular momentum is present 9 the description 

above for the time~development of the reaction in the degrees of 

freedom p, !:J., a would continue to be approximately valid provided the 

proper injection velocity in the distance degree of freedom (p) was 

used as the initial condition. This approximation corresponds to 

the centrifugal and Coriolis forces, as regards their effects 

on the dynamical development of the shape, as negligible compared to 

the electric and nuclear forces, 

vlhen the amount of angular momentum is large, some limited progress 

might be made in a simplified scheme where the centrifugal force was 

retained, but the Coriolis forces still disregarded. One could then 

try to mock up the centrifugal force by an increase in the electric 

repulsion, L e., by the replacement of the effective fissility X by 

an effective disruption parameter X defined by 

where L 

X 
X 

1 + Centrifugal Force (near contact) 
Electric Force (near contact) 

is the angular momentum and ~ is an estimate of the moment 
0 

of inertia near contact. This suggests the following generalized 

approximate scaling rule: 

"For two dinuclear systems, with possibly different sizes, asym~ 

metries and angular momenta, the dynamical time evolutions in a limited 

regime can be approximately scaled into each other (by the use of the 
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natural units of time and length) provided the effective disruption 

parameters X are the same." 

I intend to study further the usefulness of this approach (see 

also [3]). 

13. Summary 

I have sketched an attempt to develop an algebraic theory of the gross 

macroscopic dynamical shape evolutions in fission and nucleus~nucleus 

collisions. A crucial physical ingredient was the one-body dissipation 

function. Even though the price paid for an algebraic theory was the 

introduction of various more or less drastic technical approximations 

(that could, in principle, be avoided), the scheme may be useful in 

suggesting scaling rules and making more precise our intuitive ideas 

about various types of reactions (deep-inelastic, quasifission, 

compound-nucleus). There is a wealth of specific information in these 

studies on normal modes, on reaction times, on energy loss, etc., which 

I have not been able to present, and the treatment of angular momentum 

has not progressed very far. Also, I have not been able to give 

a comparison with experimental evidence, but I look forward to a 

broad confrontation of theory and experiment in the future. I hope 

the scheme I have described may prove to be a useful background and a 

complement to more detailed and realistic microscopic computer studies 

of the kind that Sven-Gosta Nilsson and his Lund Group were masters of. 
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Figure captions 

Fig. 1. The nuclear configuration is parametrized by two spheres 

connected by a conical neck. The asymmetry is specified by ~. 

the center-separation by p, and the degree of window opening 

by a. The distance between the tips of the spheres may be 

positive or negative. 

Fig. 2. Perspective view of half the "configuration box11 (corresponding 

to ~ > 0). The part shown is bounded by the planes a "' 0,1 and 

~ = 0,1. A curved surface bounds the box on the left. On the 

right, the box extends to infinity. Various types of shapes 

correspond to the different parts of the box, as indicated 

by descriptive labels. In the dinuclear regime, the approxi­

mation is made that the configuration space is a stack of 

noncommunicating sections at fixed asymmetry. 

Fig. 3. Plan and side view of the configuration box from Fig. 2. The 

side view suggests a similarity of the box with the shape of 

an aircraft carrier. The flight deck is carried forward on 

a curved bow and overhangs the hull in the triangular regions 

labeled 11 single sphere." The two spheres describing the shape 

are tangent at p = 0. "Half-immersion11 corresponds to shapes 

where the center of the smaller sphere has just entered the 

larger sphere. Full immersion takes place for ~ < p and leads 

to a single sphere for the resulting shape. 
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Fig. 4. Comparison of the energies of the Bohr-Wheeler and Businaro-

Gallone saddles as calculated in our approximation (using a 

cubic potential energy) with accurate values calculated with 

the aid of electronic computers. The relative fissility X 
0 

or x may be regarded as the charge on the system, divided by 

the value that makes the Bohr-Wheeler saddle spherical. The 

critical bifurcation point, where the Businaro-Gallone saddles 

branch off, is indicated by an arrow. 

Fig. 5. The characteristic times of the normal modes of motion in the 

vicinity of the Bohr-Wheeler saddle. To the right of the 

shaded band, in the mononuclear regime, all the modes are 

overdamped, with exponential growth or decay times as shown. 

In the dinuclear regime~ the fission mode is a growing exponen-

tial, and the transverse mode is an oscillation with angular 

frequency T-
1 

and damping time Tt. osc 

. 6. Example of a dynamical study of symmetric collisions between 

two medium-weight nuclei (A1 = A2 ~ 104, Z1 = Z2 ~ 41). 

The total system is characterized by a fissility X = 0, 7, 
0 

The lower part of the figure gives a projection on the a-p 

plane and the upper part a projection on the ~-p plane of 

the configuration space. The first and second trajectories, 

with energies 0 and 3.6 MeV above the interaction barrier, fail 

to fuse and reseparate after dissipating some energy. With 

10 MeV above the barrier, fusion takes place (third trajectory). 

Dots are spaced at 1/10 of the natural time unit, i.e., at 
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1. 2 x 10~ 22 sec. Circled dots indicate the lapse of a full 

time unit. The dashed lines are equipotentials, with energy 

expressed in units of the surface energy of a single sphere 

(about 583 MeV) and with reference to the energy of the 

spherical configurations. The location of the saddle point 

is indicated by the crossing equipotentials in the a-p plane 

and by a semicircle with a cross in the 6-p plane (upper part 

of the figure). The asymmetry is specified by 6 on the left 

and by the fractional target mass on the right. The quantities 

S 1 a.re dimensionless injection velocities for the three 

trajectories. 

Fig. 7. This is like Fig, 6 but refers to a lighter system with 

X = 0. 4 (A~ 106, Z ~ 46) . The saddle-paint shape is now 
0 

more elongated than the tangent configuration and automatic 

capture into a compound nucleus takes place even with zero 

injection velocity. Note the discontinuity in the slope of 

the traj ecotry at a'"' !2, which reflects the discontinuous 

transition from the dinuclear to the mononuclear regime. 

Fig, 8. This is like Fig. 6 but for a super~heavy system with fissility 

X = 1 (A~ 320, z~ 120). The saddle point (crossed circle) is 
0 

now the sphere at p"" 0, a"' 1, The trajectory with zero energy 

above the barrier never comes close the the spherical 

configuration. 

Fig. 9. The total system is the same as in Fig. 7, but the asymmetry 

The equipotentials refer now to a section at 6 = 0.4 (and not 



to the midplane b."" 0. as in Figs. 6 and 7). The conditional 

saddle is more elongated than the tangent configuration and 

automatic capture inside this saddle takes place. The system 

then proceeds to fuse and reaches the spherical shape without 

hesitation. 

Fig, 10. This is similar to Fig. 8, but the asymmetry is b.= 0, 346077 

(A 1 ~ 287, Z 1 ~ 108; A2 ~ 33, Z2 ~ 12) , which is close to the 

critical value below which automatic capture does not take 

place. The effective fissility is X= 0.57, and the trajectory 

only barely manages to be captured inside the conditional 

saddle. It hovers for about one time unit very close to the 

saddle. 

Fig. 11. The critical injection velocity (in the natural unit 2y/pvR) 

needed for capture inside the conditional saddle is plotted 

against the effective fissility X. Some 40 different reactions 

covering a wide range of target-projectile combinations, are 

represented by the dots. The fair degree of clustering of 

the dots in a plot vs, X attests to the relatively slight 

dependence of the trajectories in the dinuclear regime on the 

inertia parameter~· For X > 1//2, the conditional saddles 

enter the mononuclear regime and the continued use of equations 

of motion appropriate to the dinuclear regime can only provide 

a lower limit on the critical injection velocity. The dots 

followed from approximate analytic solutions of the equations 

of motion. The circles, obtained by numerical integrations, 

provide spot checks on the accuracy of those solutions. 



Fig. 12. If nuclear reactions are classified according to the asyrmnetry 

!::. and the fissility X , the !::.~X plane becomes divided into 
0 0 

two regions, with the effective fissility X less than or 

greater than X (equal to about 0.57 in the present model), 
c 

For X> 0.57, deep~inelastic reactions are expected to make 

their appearance in head-on collisions. For X ~ 1/12 the 

conditional saddles enter the mononuclear regime and tend to 

lose their physical significance because of the unfreezing of 

the asymmetry degree of freedom. 

Fig. 13. This is a translation of the !::. vs. X0 diagram. of Fig. 12 into 

a classification of reactions according to target and projec-

tile mass numbers. The contour lines indicate estimates of 

the extra energy above the interaction barrier (in MeV) 

required for capture inside the conditional saddle, Below 

the zero-MeV contour, automatic capture takes place. Above 

a contour with 15-20 MeV, the conditional saddle is in the 

mononuclear regime and the dashed contours are then only lower 

limits. The circled numbers indicate the energy above the 

barrier (in MeV) required for compound-nucleus formation (or, 

in the case of the heaviest systems, for the attainment of 

the spherical shape), The triangle, circle, dot, and cross 

indicate approximately the locations of four superheavy-type 

reactions, listed on the right (together with estimated 

fission barriers due to hypothetical shell effects). Two other 

reactions (leading to the same compound nucleus with A= 215) 

are also indicated. The figure suggests that a direct 



dynamical fusion of two comparable nuclei into a superheavy 

system is opposed by a huge "wall" requiring tens of even 

hundreds of MeV in excess of the interaction barrier, The 

height of the wall drops off precipitously as the asynunetry 

of the reaction is increased and might be tolerable by the 

time projectiles with a mass of A
2 
~50 are used, With projec­

tiles below some mass in the range 30-40, automatic attainment 

of the spherical shape might be expected (the "end run" into 

the "superheavy end zone"). 

Fig. 14. This is like Figs. 6-10 but illustrates the emergence of 

mononucleus (quasifission) reactions as a species separate 

from dinucleus (deep-inelastic) reactions. The middle trajec­

tory, with 5 MeV injection energy, is captured inside the 

conditional saddle but leads to reseparation after a decrease 

of the asymrnetry. 

Fig. 15. This is another example of a mononucleus reaction, where 

capture inside the conditional saddle took place but the 

unconditional saddle was not surmounted. This "quasi-fission" 

reaction took more than 120 x 10-22 sec and the final division 

is almost synunetric. 

Fig. 16. This figure illustrates three types of reactions: (a) deep 

inelastic (lowest trajectory) following injection with zero 

energy above the barrier, (b) quasifission, following injection 

with 7.2 MeV (the other reseparating trajectory), and (c) a 

compound-nucleus reaction (trajectory on the left, with 65.7 



MeV injection energy). The fourth curve corresponds to a 

critical injection energy close to 16.4 MeV, chosen so that the 

system would come to rest (in unstable equilibrium) at the 

unconditional saddle point (indicated by a crossed semicircle). 
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